
Hamming codes: Theory and Practice (width Arduino)

This work is licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-
sa/4.0/.

I needed a wireless communication for a personal project (an other
weather station jjjj) and I didn't want to use a WIFI module
because I wanted to learn about Error Correction Codes, ECC, so I
bought an inexpensive wireless pair module (tx: XY-FST FS1000A;
rx: XY-MK-5V)

I do not recommend this module unless you want to learn the basics
of wireless (what its a ground plane and why you need it for a ¼
wave length antenna, etc...) and some about ECC jjj. This is an
ASK/OOK module so it's no very reliable, this last point is why we
need an ECC.

Hamming(7,4)

The Hamming idea, in 1950, was to create a code that once received
it detects the one bit position error and corrects it with and XOR
(more or less).
Lets see how it works. We'll create a 7bit code with 4bits of
information (this is why it's call a Hamming(7,4)). We need to
identify the 7 possible positions so:

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

H=[
11 1100 0
11 0011 0
10 1010 1] as you can see these are the binary numbers from 7 to

1 (read the matrix by the column). Our received message will be
like:
R = [b7 b6 b5 b4 b3 b2 b1]

Now if we define something call Syndrome we can detect bit errors.
The Syndrome is something like this:

S=H·RT
=[

S2

S1

S0
]=[

b7+b6+b5+b4

b7+b6+b3+b2

b7+b5+b3+b1
] as you can see the bits b4, b2, b1 appear

only once so these will be the parity bits and the rest will be
the message bits. So now, our received message will be like this:
R = [m3 m2 m1 p2 mo p1 p0]
and S will be:

S=H·RT
=[

S2

S1

S0
]=[

m3+m2+m1+ p2

m3+m2+m0+p1

m3+m1+m0+ p0
]

If S=[
0
0
0] = 0 there is no error and if S=[

1
1
0] there is an error in

the 6th bit, easy!!!

OK, now we need to Code the Message with this technique:

C = M x G = [m3 m2m1 m0] x [
a7 a6 ...a1

b7 b6 ...b1

c7 c6 ...c1

d7 d6...d1
]=[c7 c6 ...c1]

c7 = a7m3 + b7m2 + c7m1 + d7m0 = m3 so the first column of G is [
1
0
0
0
] and

if you continue you'll get G=[
1001011
010101 0
0 011001
0 000111

]
Take a look to G and you'll notice that columns 7, 6, 5 and 3
transmit the message as is, and the other columns calculate the
parity (we'll use that later...).

Hamming(8, 4)

Well, in a computer world where all is related with powers of 2
sending a 7 bit message is something weird so we're going to send
instead a 8 bit message but the extra bit will not be an useless
bit. With the Hamming(7, 4) we can detect and correct one bit
errors, but with Hamming(8, 4) we can detect and correct one bit

error and detect a two bit error (sorry I'm not going to explain
this...).
The equations are the same but now we have an other parity bit so:

C = M x G = [m3 m2m1 m0] x [
a8 a7...a1

b8 b7...b1

c8c7 ...c1

d8 d7...d1
]=[c8 c7 ...c1] so G=[

0100 1011
10101010
10011001
1000 0111

] but this

time I'm going to group all the columns that send the message as

is so G=[I 4

01 11
10 11
1101
1110

] this is a way to normalize the matrix.

OK, now we need to decode the Received message and it would have
some Errors... R = C + E and this time the syndrome matrix is:
S= HRT = HCT + HET = 0 + HET (the coded message doesn't have errors)
so:
0 = m2 + m1 + m0 + p3 C8 + 0 + C6 + C5 + 0 + C3 + 0 + 0 = 0
0 = m3 + m2 + m1 + p2 = HCT = ...
0 = m3 + m2 + m2 + p1

0 = m3 + m1 + m0 + p0 0 + C7 + 0 + C5 + 0 + C3 + 0 + C1 = 0

and finally H=[
101101 00
011110 00
011001 10
010101 01

] and as you can see this H is related

closely with our previous one.

So that's it:
• To send a message we need to code it: C = M x G
• To decode the received message we use: R = C + E

Lets see the Hamming codes in action 1

The message will be M = 0111

1) No error

R = C + E = C + 0 = [01111000] and S = HRT = [
10110100
01111000
01100110
01010101

] x [
0
1
1
1
1
0
0
0
]=[

0
0
0
0
] so

yes... there's no error jjj

1 As an exercise lets do a 2 bit error and 3 bit error in R

2)One bit error

R = C + E = [01111000] + [00000100] = [01111100] There's one bit

error at the 3rd bit. S = HRT = [
1
0
1
1
] ummm it detects an error in the

11 bit... but our code only has 8 bits. The trick here is that we
need to use a module 8 arithmetic (in fact, if you use software
like Octave or Matlab to calculate the matrices you'll get an
integer values, not binary ones, but the trick it's the same, you
need to use a module 2 arithmetic instead because we're using a
binary code) so the bit we're talking about it's the 3rd bit. So
lets XOR it and test all the parity bits (well... it's not
necessary because it's the same message as the previous one jjj)

Using the Hamming(8,4) with a tiny microcontroller (like Arduino)

Maybe you have noticed instantly that all this checks, arithmetic,
etc are going to consume to much time and will be hard to code.
Well there's a really tiny solution too: lets precalculate this
values!!!

All the possible coded messages are 16 and all the possible
received messages are 256 (almost a ¼ KB!!) Event this amount of
space is ridiculous, we'll put this data in the flash memory not
in the RAM (because Ardunio/Genuino UNO has 2Kb of SRAM and 32Kb
of flash memory...)

The table of possible coded messages is:

0x00, 0x1e, 0x2d, 0x33, 0x4b, 0x55, 0x66, 0x78, 0x87, 0x99, 0xaa,
0xb4, 0xcc, 0xd2, 0xe1, 0xff

And the possible received ones is:

 0x00, 0x00, 0x00, 0x10, 0x00, 0x10, 0x10, 0x08, 0x00, 0x10,
0x10, 0x04, 0x10, 0x02, 0x01, 0x10,
 0x00, 0x10, 0x10, 0x03, 0x10, 0x05, 0x01, 0x10, 0x10, 0x09,
0x01, 0x10, 0x01, 0x10, 0x01, 0x01,
 0x00, 0x10, 0x10, 0x03, 0x10, 0x02, 0x06, 0x10, 0x10, 0x02,
0x0a, 0x10, 0x02, 0x02, 0x10, 0x02,
 0x10, 0x03, 0x03, 0x03, 0x0b, 0x10, 0x10, 0x03, 0x07, 0x10,
0x10, 0x03, 0x10, 0x02, 0x01, 0x10,
 0x00, 0x10, 0x10, 0x04, 0x10, 0x05, 0x06, 0x10, 0x10, 0x04,
0x04, 0x04, 0x0c, 0x10, 0x10, 0x04,
 0x10, 0x05, 0x0d, 0x10, 0x05, 0x05, 0x10, 0x05, 0x07, 0x10,
0x10, 0x04, 0x10, 0x05, 0x01, 0x10,
 0x10, 0x0e, 0x06, 0x10, 0x06, 0x10, 0x06, 0x06, 0x07, 0x10,
0x10, 0x04, 0x10, 0x02, 0x06, 0x10,
 0x07, 0x10, 0x10, 0x03, 0x10, 0x05, 0x06, 0x10, 0x07, 0x07,
0x07, 0x10, 0x07, 0x10, 0x10, 0x0f,

https://www.arduino.cc/en/Main/ArduinoBoardUno
https://www.arduino.cc/en/Main/ArduinoBoardUno

 0x00, 0x10, 0x10, 0x08, 0x10, 0x08, 0x08, 0x08, 0x10, 0x09,
0x0a, 0x10, 0x0c, 0x10, 0x10, 0x08,
 0x10, 0x09, 0x0d, 0x10, 0x0b, 0x10, 0x10, 0x08, 0x09, 0x09,
0x10, 0x09, 0x10, 0x09, 0x01, 0x10,
 0x10, 0x0e, 0x0a, 0x10, 0x0b, 0x10, 0x10, 0x08, 0x0a, 0x10,
0x0a, 0x0a, 0x10, 0x02, 0x0a, 0x10,
 0x0b, 0x10, 0x10, 0x03, 0x0b, 0x0b, 0x0b, 0x10, 0x10, 0x09,
0x0a, 0x10, 0x0b, 0x10, 0x10, 0x0f,
 0x10, 0x0e, 0x0d, 0x10, 0x0c, 0x10, 0x10, 0x08, 0x0c, 0x10,
0x10, 0x04, 0x0c, 0x0c, 0x0c, 0x10,
 0x0d, 0x10, 0x0d, 0x0d, 0x10, 0x05, 0x0d, 0x10, 0x10, 0x09,
0x0d, 0x10, 0x0c, 0x10, 0x10, 0x0f,
 0x0e, 0x0e, 0x10, 0x0e, 0x10, 0x0e, 0x06, 0x10, 0x10, 0x0e,
0x0a, 0x10, 0x0c, 0x10, 0x10, 0x0f,
 0x10, 0x0e, 0x0d, 0x10, 0x0b, 0x10, 0x10, 0x0f, 0x07, 0x10,
0x10, 0x0f, 0x10, 0x0f, 0x0f, 0x0f

Notice that I've marked the impossible messages to correct with
0x10 because the biggest correct message is 0x0F

Of course I've wrapped all this stuff in a class so it's really
easy to use this Hamming(8,4) in our Arduino. As a practical
example I'm using the class with a RF module but you can use it
with all kind of byte communication.

To see all the class code and some examples see the Hamming
library.

Happy arduining ;-)

Code: https://bitbucket.org/bullakio/hamming-8-4-arduino

https://bitbucket.org/bullakio/hamming-8-4-arduino
https://bitbucket.org/bullakio/hamming-8-4-arduino

